
An Experimental Study of

Global and Local Search Algorithms

in Empirical Performance Tuning

Prasanna Balaprakash, Stefan M. Wild, and Paul D. Hovland

Mathematics and Computer Science Division
Argonne National Laboratory, Argonne, IL 60439

{pbalapra,wild,hovland}@mcs.anl.gov

Abstract. The increasing complexity, heterogeneity, and rapid evolu-
tion of modern computer architectures present obstacles for achieving
high performance of scientific codes on different machines. Empirical
performance tuning is a viable approach to obtain high-performing code
variants based on their measured performance on the target machine.
In previous work, we formulated the search for the best code variant
as a numerical optimization problem. From a mathematical optimiza-
tion standpoint, two classes of algorithms are available to tackle this
problem: global and local algorithms. In this paper, we investigate the
effectiveness of some global and local search algorithms for empirical per-
formance tuning. We present an experimental study of these algorithms
on a number of problems from the recently introduced SPAPT test suite.
We show that local search algorithms are particularly attractive for em-
pirical performance tuning, where finding high-preforming code variants
in a short computation time is crucial.

1 Introduction

The rapid rate of innovations in computing architectures has widened the gap
between the theoretical peak and the achievable performance of scientific codes
[1]. Often, scientific application programmers address this issue by manually
rewriting the code for the target machine, but this approach is neither scalable
nor portable. Empirical performance tuning or automatic performance tuning (in
short, autotuning) is a promising approach to address the limitations of manual
tuning. This approach consists of identifying relevant code optimization tech-
niques (such as loop unrolling, register tiling, and loop vectorization), assigning
a range of parameter values using hardware expertise and application-specific
knowledge, and then either enumerating or searching this parameter space to
find the best-performing parameter configuration for the given machine. Using
this approach, several researchers have achieved considerable success in tuning
scientific kernels for both serial and multicore processors [1, 5, 7, 8, 15, 17].

In large-scale empirical performance tuning, the computation time needed to
enumerate all parameter configurations in a large decision space is prohibitively

expensive in practice. Hence, effective search algorithms that examine a small
subset of possible configurations are required. There are two classes of algo-
rithms: global and local search algorithms. Typically, global algorithms can be
characterized by their dynamic balance between exploration of the search space
and exploitation of the accumulated search history. They are theoretically guar-
anteed to find the globally best configuration at the expense of a long search time.
In practice, however, they are run until a user-defined stopping criterion is met.
Examples include simulated annealing, genetic algorithm, and particle swarm
optimization. In contrast, local search algorithms do not emphasize exploration
and instead repeatedly try to move from a current configuration to a nearby
improving configuration. Typically, the neighborhood of a given configuration is
problem-specific and defined by the user or algorithm. These algorithms termi-
nate when a current configuration does not have any improving neighbor and
hence is locally optimal. Examples include the Nelder-Mead simplex, orthogonal
search, variable neighborhood search, and surrogate-based search methods. The
disadvantage of local search algorithms is that, depending on the search space
and initial configuration, they can terminate with a locally optimal configuration
that performs much worse than the globally optimal configuration.

Several global and local search algorithms have been deployed for empirical
performance tuning. Seymour et al. [13] performed an experimental compari-
son of several global (random search, a genetic algorithm, simulated annealing,
particle swarm) and local (Nelder-Mead and orthogonal search) optimization
algorithms. Similarly, Kisuki et al. [10] compared random search, a genetic algo-
rithm, and simulated annealing with pyramid search and window search. In both
these studies, the experimental results showed that the random search was more
effective than the other algorithms tested. This reason is that in the tuning tasks
considered, the number of high-performing parameter configurations is large and
hence it is easy to find one of them. Moreover, we suspect that the adopted local
search algorithms are less effective since they were not customized. While Norris
et al. [11] implemented the Nelder-Mead simplex method, simulated annealing,
and a genetic algorithm in the empirical performance tuning framework Orio,
the authors did not conduct an experimental comparison. A number of previous
works deploy local search algorithms for empirical performance tuning. Examples
include orthogonal search in ATLAS [16], pattern search in loop optimization
[12], and a modified Nelder-Mead simplex algorithm in Active Harmony [14, 15].
However, a comparison with global search algorithms was not available. From
the literature, it is not clear whether local search or global search is best suited
for the empirical performance tuning and, in particular, under what conditions
one class may be better than another.

In this paper, we focus on a setting where the available computation time
for tuning is highly limited. Our hypothesis is that appropriately modified local
search algorithms can find high-performing code variants in short computation
times. This is based on the rationale that the exploration component of global
search algorithms is less beneficial in empirical performance-tuning problems,
where finding high-performing configurations in short computation time is more

important than finding the optimal configuration independent of the computa-
tion time required. We conduct an experimental study of some global and local
search algorithms on a number of problems from the SPAPT test suite. We an-
alyze the impact of initial configuration from which a search algorithm starts,
input size, and search time constraints on the effectiveness of global and local
search algorithms. The main contribution of the paper is the empirical evidence
for the effectiveness of the local search algorithms in the empirical performance
tuning under short computation times.

2 Search as a mathematical optimization problem

Search problems in empirical performance tuning are defined by a specific com-
bination of a kernel, an input size, a set of tunable decision parameters, a set
of feasible parameter values, and a default/initial configuration of these param-
eters for use by search algorithms. When combined with a target machine and
performance objective f (which we will assume should be minimized), the search
problem can be modeled as the mathematical optimization problem:

min
xI

f(xI)

such that xIj
∈ {lj, · · · , uj}, j = 1, . . . , ni,

(1)

where xI is a vector with ni integer parameters and lj and uj are the lower
and upper bounds for the jth parameter, respectively. Details on modeling and
formulating problems such as (1) are given in [2]. We denote the collective feasible
set for a given problem by D, which is defined by the bound constraints. An
example is loop unroll and jam, where the values are positive and take integer
values up to a maximum value. Thus, D is a hyperrectangle containing |D| =∏ni

j=1(uj − lj + 1) feasible configurations.

3 Search algorithms

In this section, we provide summarize the algorithms considered in our exper-
imental study. For global search algorithms, we consider random search, ge-
netic algorithm, and simulated annealing; for local search algorithms, we use the
Nelder-Mead simplex method and a surrogate-based search.

Random search is a simple global search shown to be effective on a num-
ber of performance tuning tasks. The parameter configurations are sampled uni-
formly at random from the feasible domain D without replacement. At iteration
k, each x ∈ D not already sampled has probability 1

|D|−k+1 of being selected as

the point x(k). In the absence of other criteria, the algorithm terminates after
|D| iterations with the global minimum.

Genetic algorithms are among the most widely used global search algo-
rithms. These algorithms follow a common framework that consists of iteratively
modifying a population of configurations by applying a set of evolutionary op-
erations such as reproduction, recombination, and mutation. Several variants

exist; the best one depends on the problem at hand and the parameters of the
algorithm. We use a genetic algorithm based on [4].

Simulated annealing is inspired by the physical process of annealing. The
key algorithmic component is an annealing schedule that slowly reduces the
value of a temperature parameter T so that the probability of accepting a worse
configuration decreases as the search progresses [9]. The mechanism of accepting
worse configurations during the search helps the algorithm escape from bad local
configurations encountered in the early stages of the search.

The Nelder-Mead simplex method was originally developed to solve un-
constrained continuous optimization problems. It works with a simplex of n+ 1
vertices, where n is the number of paramters. At each iteration, the simplex
moves away from less promising regions of the search space using reflection,
expansion, contraction, or shrink operators. We use a Nelder-Mead simplex al-
gorithm that is customized for empirical performance tuning task; see [2] for
implementation details.

Surrogate-based search is an algorithmic framework that uses inexpen-
sive surrogates to approximate the computationally expensive objective. For our
experiments, we consider a basic trust-region algorithm [6] that operates on
discrete values. It starts by constructing a quadratic surrogate function by eval-
uating a few configurations. At each iteration, a configuration that minimizes
the surrogate is evaluated, and the difference between the true function value
and the predicted surrogate value is used to check the quality of the surrogate.
When the surrogate is accurate enough, the trust region is expanded; otherwise,
the region is contracted and a promising neighbor of the current configuration
is evaluated to improve the surrogate.

4 Numerical experiments

We evaluate the algorithms on problems from the SPAPT test suite [3], a col-
lection of extensible and portable search problems in automatic performance
tuning. These problems are implemented in an annotation-based language that
can be readily processed by Orio [11]. Originally, the SPAPT problems have in-
teger and binary parameters with both bound and algebraic constraints. Since
the focus of our study is on bound-constrained problems with integer param-
eters only, we removed all algebraic constraints and binary parameters from
the problems. The removal of binary parameters associated with tuning direc-
tives, such as scalar replacement, array copy, loop vectorization, and OpenMP,
reduced the achievable speedups. Therefore, the difference in the speedups re-
ported in the experiments is rather small. The numerical parameters include
loop unroll/jamming ∈ [1,. . ., 50], cache tiling ∈ [1, 2, 4, 8, 16, 32, 64, 128, 256,
512, 1024, 2048] (treated as [1,. . .,12]), and register tiling ∈ [1, . . .,32]. The num-
ber of parameters ni ranges between 8 and 38 and the size of search space |D|
ranges between 5.31e10 and 1.24e53. Of 18 problems in the SPAPT test suite,
we use only 12 because on 6 problems the algebraic constraints are required for
the correctness of the transformation.

(a) fdtd (b) gemver

Fig. 1. Best objective value obtained by each algorithm as a function of search time.
Each algorithm is allowed to perform 100 function evaluations. Markers are placed at
every 10 evaluations.

Random search (RS), the genetic algorithm (GA), simulated annealing (SA),
modified Nelder-Mead simplex (mNM), and modified surrogate-based search
(mSBS) were implemented and run in MATLAB version 7.9.0.529 (R2009b). We
adopted the default parameter values for all the algorithms. Experiments are
carried out on dedicated nodes of Fusion, a 320-node cluster at Argonne Na-
tional Laboratory, comprising 2.6 GHz Intel Xeon processors with 36 GB of
RAM, under the stock Linux kernel version 2.6.18 provided by RedHat.

We considered the objective value f(x) at a parameter configuration x as the
average computation time over 10 generated code runs. Other objective functions
can be adopted, such as the median or minimum, see [3] for a discussion. For the
initial configuration from which the algorithms start, we set each parameter to its
lower bound. This corresponds to a code variant without any transformation. We
used 100 code evaluations as the stopping criterion for each algorithm. Given
a parameter configuration, a code evaluation consists of code transformation,
compilation, and execution. For the size of the search space that we have, this
corresponds to the evaluation of only 8.05e-50% (|D|=1.24e53) to 0.00000018%
(|D|=5.31e10) of the total configurations.

Figures 1(a) and 1(b) show the solution quality development of each algo-
rithm over the search time for the problems based on fdtd and gemver, respec-
tively. On fdtd, we observe that the two local search algorithms, mNM and
mSBS, obtain high-quality configurations in short computation time. They ob-
tain speedups of 1.15 and 1.17, respectively. However, the main advantage here
comes from the time required for the algorithms to complete 100 code evalu-
ations. RS and GA require longer search time (3000 and 5000 CPU-seconds,
respectively) because they spend more time exploring the domain and tend to
be slower than mNM and mSBS. Although the time required for SA to com-
plete 100 code evaluations is shorter than that required for mSBS, the quality
of the configuration obtained by SA is poor. The results are similar on gemver,
where mNM and mSBS obtain speedups of 1.33 and 1.26, respectively, in short
computation times. On 10 of 12 problems, we found that the local search algo-
rithms similarly outperformed the global search algorithms. On bicg, GA found

(a) gesummv (b) jacobi

Fig. 2. Best objective value obtained by each algorithm as a function of search time.
Algorithms start from poor initial configurations (the upper bounds) and are allowed
to perform 100 function evaluations. Markers are placed at every 20 evaluations.

high-quality code variants in short computation times; and on correlation, we
cannot detect a significant difference between the results of the global and local
search algorithms.

Under the same computation budget of 100 code evaluations, we tested the
behavior of the algorithms on larger input sizes (the size of the arrays and
matrices in the kernels) by doubling the input size for each problem. Although
the time to complete 100 code evaluations and speedups of the final code variants
are larger than those observed with smaller input sizes, the trend in the behavior
of the algorithms is similar: the local search algorithms obtain high-performing
code variants in short computation time. Out of 12 problems, on 9 problems the
local search algorithms are better than the global search algorithms.

Figures 2(a) and 2(b) show the results when the starting point is set to
the upper-bound values. From the exploratory studies, we found that the ini-
tial configurations with lower-bound values are reasonably good starting points
and that those at the upper bounds are extremely poor. mNM and SA tend to
be sensitive to the starting point and obtain poor results. The reason for the
longer search times of these two algorithms is that the parameter configura-
tions closer to upper bound have longer transformation time and consequently
longer compile time. Whereas SA tries to escape from the nonpromising region,
mNM stagnates, spending most of the search time exploring the neighborhood
of the current configuration. mSBS obtains high-performing code variants with
speedups of 4.7 and 3.6, respectively. This algorithm was found to less sensitive
than mNM or SA to the starting point because it uses randomly sampled config-
urations within a larger initial neighborhood to form the initial surrogate. GA
uses the initial configuration only as an individual of the population in the first
iteration. Since RS is independent of the starting point, it found better code
variants than did mNM and SA in short computation times. The results show
that the poor starting points significantly reduce the effectiveness of the local
search algorithms. Out of 12, only on 6 problems the local search algorithms,
in particular, mSBS, outperformed the global search algorithms. We also used
the center of the hyperrectangle D as a starting point. The results observed are

(a) mm (b) lu

Fig. 3. Best objective value obtained by each algorithm as a function of search time.
Each algorithm is allowed to perform 500 function evaluations. Markers are placed at
every 100 evaluations.

similar to those with lower bounds as in Figure 1, local algorithms being better
than the global algorithms despite a slightly worse starting value than the lower
bound.

Figures 3(a) and 3(b) illustrate the behavior of the algorithms using a slightly
larger computation budget (500 code evaluations) as the stopping criterion. The
algorithms start from initial configurations in which each parameter is set to its
lower-bound value. On mm, GA and SA obtain code variants that are better than
mNM and mSBS; on lu, SA and GA are better than mNM. The trend is similar
on other problems. Global search algorithms benefit from a larger number of it-
erations; only on 7 out of 12 problems do local search algorithms dominate global
search algorithms. Even on those 7 problems, the difference in the speedups be-
tween global and local search algorithms is smaller than that observed with 100
evaluations. Although local search algorithms find high-quality code variants in
short times, they spend the search effort in exploring the neighborhood of a local
configuration to guarantee local optimality.

To further test that the exploration component is the major factor affect-
ing the performance of global search algorithms, we reduced their degree of
exploration. Specifically, for GA and SA, we reduced the values of the mutation
parameter µ and starting temperature parameter T , respectively. We used three
GAs: GA-I (default µ = 0.5), GA-II (µ = 0.1), and GA-III (µ = 0.001). Similarly
for SA, we used SA-I (default T = 1.0), SA-II (T = 0.1), and SA-III (T = 0.001),
respectively. Note that the choice of these values is arbitrary and intended for
illustration purposes only. Figures 4(a) and 4(b) illustrate the results of the
algorithms on atax under 100 code evaluations. The default lower-bound config-
uration is used as a starting point. The results of our study show that reducing
the exploration in global search algorithms is beneficial but the appropriate re-
duction depends on the algorithm characteristics, the problem, and the starting
point. GA-I and GA-II obtain configurations with similar runtime, but the latter
obtains this configuration in a shorter period of time (1200 CPU-seconds). How-
ever, an extremely small degree of exploration in GA-III leads to stagnation. In
contrast, although slightly slower, SA-III obtains a better configuration than do

(a) GAs on atax (b) SAs on atax

Fig. 4. Best objective value obtained by each algorithm as a function of search time.
Each algorithm is allowed to perform 100 function evaluations. Markers are placed at
every 20 evaluations.

SA-I and SA-II. Our conjecture is that given a good starting point, SA with a
very low degree of exploration can be effective.

5 Conclusion and future work

We investigated the issue of global versus local search in empirical performance
tuning under short computation times. We tested illustrative global and local
algorithms on bound-constrained search problems with integer parameters in
short computation time. We used different initial configurations, input sizes,
and stopping criteria. The results show that 1) the exploration capabilities of
global search algorithms are less useful, 2) given good initial configurations, local
search algorithms can find high-performing code variants in short computation
time, and 3) poor initial configurations can significantly reduce the effectiveness
of both global and local search algorithms that are sensitive to the starting point.
From the results, we conclude that when the available tuning time is severely
limited, carefully customized local search algorithms are promising candidates
for empirical performance tuning problems that have integer parameters and
bound constraints.

Our future work includes the following: 1) problem-specific techniques to
handle binary parameters and constraints for both global and local search algo-
rithms, 2) effective restart strategies for local search to escape from local config-
urations, 3) tuning of parallel scientific codes, and iv) analysis of the impact of
different target machines on various performance objectives.

Acknowledgments

This work was supported in part by the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Dept. of Energy, under Contract DE-AC02-
06CH11357. We are grateful to the Laboratory Computing Resource Center at
Argonne National Laboratory.

References

1. D. Bailey, R. Lucas, and S. Williams, editors. Performance Tuning of Scientific
Applications. Chapman & Hall/CRC Computational Science, 2010.

2. P. Balaprakash, S. Wild, and P. Hovland. Can search algorithms save large-scale
automatic performance tuning? In The International Conference on Computational
Science, July 2011.

3. P. Balaprakash, S. Wild, and B. Norris. SPAPT: Search problems in automatic
performance tuning. Technical Report ANL/MCS-P1872-0411, Argonne National
Laboratory, 2011.

4. A. Chipperfield and P. Fleming. The MATLAB genetic algorithm toolbox. In IEE
Colloquium on Applied Control Techniques Using MATLAB, 1995.

5. I. Chung and J. Hollingsworth. A case study using automatic performance tuning
for large-scale scientific programs. In Proc. of Int. Symp. on High Performance
Distributed Computing, 2006.

6. A. R. Conn, N. I. M. Gould, and P. L. Toint. Trust Region Methods. MOS-SIAM
Series on Optimization. SIAM, Philadelphia, PA, 2000.

7. K. Datta, S. Kamil, S. Williams, L. Oliker, J. Shalf, and K. Yelick. Optimization
and performance modeling of stencil computations on modern microprocessors.
SIAM Review, 51(1):129–159, 2009.

8. S. Kamil, C. Chan, L. Oliker, J. Shalf, and S. Williams. An auto-tuning framework
for parallel multicore stencil computations. In 2010 IEEE International Symposium
on Parallel Distributed Processing (IPDPS), pages 1–12, 2010.

9. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated anneal-
ing. Science, 220:671–680, 1983.

10. T. Kisuki, P. M. W. Knijnenburg, and M. F. P. O’Boyle. Combined selection
of tile sizes and unroll factors using iterative compilation. In Proc. of the 2000
International Conference on Parallel Architectures and Compilation Techniques,
Washington, DC, 2000.

11. B. Norris, A. Hartono, and W. Gropp. Annotations for Productivity and Perfor-
mance Portability, pages 443–461. Computational Science. Chapman & Hall CRC
Press, Taylor and Francis Group, 2007.

12. A. Qasem, K. Kennedy, and J. Mellor-Crummey. Automatic tuning of whole appli-
cations using direct search and a performance-based transformation system. The
Journal of Supercomputing, 36(2):183–196, May 2006.

13. K. Seymour, H. You, and J. Dongarra. A comparison of search heuristics for
empirical code optimization. In Proc. of the 2008 IEEE International Conference
on Cluster Computing, pages 421–429, 2008.

14. V. Tabatabaee, A. Tiwari, and J. K. Hollingsworth. Parallel parameter tuning
for applications with performance variability. In Proc. of the 2005 ACM/IEEE
conference on Supercomputing, SC ’05, Washington, DC, 2005.

15. A. Tiwari, C. Chen, C. Jacqueline, M. Hall, and J. K. Hollingsworth. A scalable
auto-tuning framework for compiler optimization. In Proc. of the 2009 IEEE Inter-
national Symposium on Parallel & Distributed Processing, pages 1–12, Washington,
DC, 2009.

16. R. C. Whaley and J. J. Dongarra. Automatically tuned linear algebra software. In
Proc. of the 1998 ACM/IEEE Conference on Supercomputing, SC ’98, pages 1–27,
Washington, DC, 1998.

17. S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel. Optimization
of sparse matrix-vector multiplication on emerging multicore platforms. Parallel
Computing, 35(3):178–194, 2009.

The submitted manuscript has been created by the University of Chicago as Operator of Argonne Na-
tional Laboratory (“Argonne”) under Contract DE-AC02-06CH11357 with the U.S. Department of En-
ergy. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive,
irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to
the public, and perform publicly and display publicly, by or on behalf of the Government.

